
	INDIAN SCHOOL AL WADI AL KABIR		
Class: XII	Department: SCIENCE (BIOLOGY) 2023-2024		Date of submission: 10/11/23
Worksheet No: 11	UNIT: ECOLOGY Chapter: ECOSYSTEM		Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

CASE STUDY

1. A part of an aquatic ecosystem is represented in the picture provided above.

- a) Construct a food chain operating in this ecosystem. (1)
- b) Mention the relationship between 3 & 4 with regard to trophic levels. (1)
- c) How will a pond act as a mini ecosystem. (2)
- 2. You may have heard of the earthworm being referred to as the farmer's 'friend'. Decomposers break down complex organic matter into inorganic substances like carbon dioxide, water and nutrients and the process is called decomposition. The important steps in the process of decomposition are fragmentation, leaching, catabolism, humification and mineralization. Decomposition is largely an oxygen dependent process. The rate of decomposition is controlled by chemical composition of detritus and climatic factors.
- a) Name the raw material of decomposition. (1)

b) When water so salts, then the pro	_	_	the soil and precipitated a	as unavailable (1)
(i) Catabolism				
(ii) Fermentation				
(iii) Humification	1			
(iv) Leaching				
c) Briefly explain detritus and clima		f decomposition is con	ntrolled by chemical com	position of (2)
MULTIPLE CH	IOICE QUEST	TONS (1 Mark)		
1. Approximately chemical energy a. Less th	by photosynthes		alls on the leaves of a pland. 50%	nt is converted to
2. Which of the f	ollowing is not	a producer?		
a. Spirogy	yra b. Agari	cus c. Volvox	d. Nostoc	
3. Productivity is i. (kcal m ii. g ⁻² yr ⁻¹ iii. g ⁻¹ yr ⁻¹ iv. (kcal r	- ³) yr ⁻¹	uction of biomass, ex	pressed in terms of:	
a. ii	b. iii	c. ii and iv	d. i and iii	
4. The process of	mineralisation	by microorganisms he	elps in the release of:	
a. inorgar	nic nutrients from	n humus		
b. both or	ganic and inorg	anic nutrients from de	etritus	
c. organic	nutrients from	humus		
d. inorgar	nic nutrients from	n detritus and formati	on of humus.	
5. An inverted py	ramid of bioma	ss can be found in wh	ich ecosystem?	
a. Forest				
b. Marine	;			
c. Grass 1	and			
d. Tundra	Ĺ			
6. Which of the f	ollowing ecosys	tems is most producti	ive in terms of net primar	y production?

- a. Deserts
- b. Tropical rain forests
- c. Oceans
- d. Estuaries
- 7. Among the following, where do you think the process of decomposition would be the fastest?
 - a. Tropical rain forest
 - b. Antarctic
 - c. Dry arid region
 - d. Desert
- 8. If the carbon atoms fixed by producers already have passed through three species, the trophic level of the last species would be.
 - a. First trophic level
 - b. Second trophic level
 - c. Third trophic level
 - d. Fourth trophic level

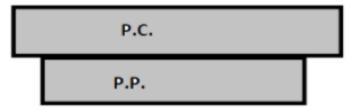
TWO MARK QUESTIONS

- 9.Expand PAR, how much PAR is used in gross primary productivity?
- 10. Give account of factors affecting the rate of decomposition.
- 11. Why is the length of a food chain in an ecosystem generally limited to 3-4 trophic levels?
- 12. Which ecosystem has maximum stratification? Justify.
- 13. Construct a grazing food chain using the following with five links.

(Earth worm, bird, snake, vulture, grass, grasshopper, frog, decaying plant matter)

THREE MARK QUESTIONS

- 14. What are ecological pyramids? Mention its limitations
- 15. Briefly describe the process of decomposition
- 16. Construct a pyramid of biomass starting with phytoplankton. Label 3 trophic levels. Is the pyramid upright or inverted? Why?


FIVE MARK QUESTIONS

17. (a) Draw the ideal pyramid of energy up to four trophic levels where 10,000 J are available from sun light to the primary producer. Indicate the amount of end product available at each trophic level.

- (b) Why is pyramid of energy always upright? Explain.
- (c) Mention the limitations of an ecological pyramid.
- 18.(a) Give an example for a pyramid where small standing crop of phytoplankton supports large standing crop of zooplankton. Draw the pyramid.
 - (b) How does pyramid of biomass of forest ecosystem is different from that of lake ecosystem?

PREVIOUS IMPORTANT BOARD QUESTIONS

- 19. If we count the number of insects on a tree and the number of small birds depending on those insects as also the number of larger birds eating the smaller, what kind of pyramid of 20 number would we get?
- 20. Name any two man-made ecosystems?
- 21. Define stratification?
- 22. What is the shape of the pyramid of biomass in the sea? Why?
- 23. In the pyramid of biomass drawn below, name the two crops (i) one which is supported (ii) one which supports. In which ecosystem are such types of pyramids found?

- 24. What is meant by ecological pyramid? With the help of one example each, show that the pyramid of numbers can be both upright as well as inverted.
- 25. What are the limitations of ecological pyramids?
- 26. Name any four ecosystem services. Who gave the price tags on nature's life support services? Which is the most important ecosystem service provider?
- 27. What is decomposition? Describe the different processes involved in decomposition?

HINTS/SOLUTION

	MULTIPLE CHOICE QUESTIONS	
1	b. 2-10%	1
2	b. Agaricus	1
3	c. ii and iv	1
4	a. inorganic nutrients from humus	1
5	b. Marine	1
6	b. Tropical rain forests	1
7	a. Tropical rain forest	1
8	d. Fourth trophic level	1
	TWO MARKS QUESTIONS	
9	Photosynthetically Active Radiation, 2-10%	2
10	Environmental factors and chemical nature of detritus	2

11	It is due to law of 10%	2
12	Tropical rain forest, vertical distribution of different layers	
13	Any one food chain – with 5 trophic levels	
	THREE MARKS QUESTIONS	
14	Graphical representation of food chain, Limitations – only food chain but not	3
	food web, decomposers are not represented, organism belonging to two or	
	more trophic levels cannot be represented	
15	Explanation of – fragmentation, leaching, catabolism, humification and	3
	mineralization	
16	Inverted pyramid – construction, biomass of phytoplankton will be less	3
	FIVE MARKS QUESTIONS	
17	Construction of pyramid, energy level based on law of 10%, upright pyramid,	5
	limitations	
18	(a) Pyramid of biomass – inverted	5
	(b) Forest – upright and inverted in lake ecosystem	
	PREVIOUS BOARD QUESTIONS	
19	Inverted Pyramid of Number.	1
20	Aquarium and Garden are two man-made ecosystems.	1
21	In an ecosystem, stratification refers to the vertical distribution of distinct	1
	species at different levels.	
22	The shape of the pyramid of biomass in the sea is inverted. This is because the	2
	amount of biomass is maximum at the apex of the pyramid and least at the	
	bottom of the pyramid.	
23	i. Supported trophic level is formed by zooplanktons (Primary consumers).	
	ii. Supporting trophic level is formed by phytoplankton (Secondary	2
	consumers). such types of pyramids are found in aquatic ecosystems.	
24	A pyramid of numbers is a graphical representation of the number of organisms	5
	at each trophic level.	
	In an upright pyramid of numbers, the more abundant species form the first	
	trophic level i.e., the base of the pyramid, and less abundant species remain	
	near the top.	
	Example: - Grassland ecosystem	
	Parasites	
	\Farasites	
	Lion Birds	
	Fox Rabbit Tree	
	Green plants	
	In a grassland ecosystem, producers (Green plants) are more in number, and	
	herbivores (Rabbit) are more than carnivores (Fox and Lion).	
	notorrotes (two ott) are more than earnivotes (t ox and Dion).	

	In an inverted pyramid of numbers, the most abundant species occurs at the top while the less abundant species form the base of the pyramid. Example: - Tree ecosystem	
25	i. Does not account for the equivalent species belonging to two or more trophic levels.	3
	ii. Assumes a simple food chain and does not account for a food web.	
	iii. Saprophytes have been excluded from ecological pyramids	
26	i. Drought and flood mitigation.	5
	ii. Offer aesthetic, cultural, and spiritual values.	
	iii. Cycling nutrients and generating fertile soil.	
	iv. Providing habitat for wildlife, pollinating flowers, and maintaining Biodiversity.	
	V. Robert Constanza gave price tags to	
27	The important steps in the process of decomposition are fragmentation, leaching, catabolism, humification and mineralization (explain each step briefly)	5

PREPARED BY Ms. AGNES ARANHA	CHECKED BY HOD SCIENCE